report2.md 2023-11-21

Q1. Describe how you built your model, how you used
the training set, how you choose hyperparameters and
why you made the choices you did.

Data pre-processing
We manually sanitised the dataset.

1. The first few columns of the dataset (, , ,
), which are not relevant to the problem, are removed.

2. /noin the column are substituted with with 1/0.

3. Columns with empty values and errors are dropped.

4. Rows containing erroneous data in the column are dropped. 2/8/C/D/E are then substituted with
12131475,
5. Erroneous data after the column are dropped.
After pre-processing and sanitisation, a CSV matrix (excluding labels) is obtained.
Model

We employed a random forest classifier.

The two hyperparameters we tuned are and

N_ESTIMATORS = 200
TEST_SIZE = 0.2

For , we incremented it by 50 beginning from . We used = in the end
because it can consistently achieve >95% accuracy in testing.

For , the model is trained on 80% of the training dataset with while the rest is

split to test the model.

The hyperparameters we tuned already yielded a very high accuracy, so no further optimisations are
employed. Default hyperparameters settings are used for the rest.

report2.md 2023-11-21

Q2. What are the important features of the training
set? How you obtain the results?

Feature importance

Feature importance is acquired with

Feature label Importance

217

report2.md 2023-11-21

Feature label Importance

317

report2.md 2023-11-21

The code responsible is as follows.

debuglLog("main", "printing feature importance")
feature_importances = pd.DataFrame(

model.feature_importances_, index=training_x.columns, columns=["importance"]
).sort_values("importance", ascending=False)
print(feature_importances)

417

report2.md 2023-11-21

Model metrics

Metric Value

Accuracy

Precision

Recall

Confusion matrix

The code responsible is as follows.

debuglLog("main", "printing testing metrics")
testing_prediction_y = model.predict(testing_x)
print("Accuracy:", metrics.accuracy_score(testing_y, testing_prediction_y))
print(
"Precision:",
metrics.precision_score(
testing_y, testing_prediction_y, average="weighted", zero_division=0

),

)
print(

"Recall:",
metrics.recall_score(
testing_y, testing_prediction_y, average="weighted", zero_division=0
by
)
print("Confusion Matrix:")
print(
metrics.confusion_matrix(
testing_y, testing_prediction_y, labels=[1, 2, 3, 4, 5]

517

report2.md 2023-11-21

Prediction

The predicting dataset is pre-processed and sanitised in the same manner as the training dataset. The model
predicted the classes of the 20 unseen data entries as

The code responsible is as follows.

debugLog("main", "predicting")
predictingprediction_y = model.predict(predicting_x)

debugLog("main", "printing prediction results")
print(predictingprediction_y)

print(
pd.Series(predictingprediction_y)
.replace([1, 2, 3, 4, 51, ["A", "B", n"c", "D", "E"])
.tolist()

6/7

report2.md 2023-11-21

Terminal output

Some lines are omitted for brevity, indicated by ellipses.

| prepare = trial hash: 5a

| prepare = output path: ./output/20112023_044547_0x2e53cdcd3e5aa7lc/
| main = starting

| main = loading dataset

| main = building model

| main = training model

building 0
building
building
building
building

building

building

building

building

building ’

| main = printing feature importance
importance

num_window). 092

roll_belt

yaw_belt

magnet_dumbbell_z

pitch_forearm

gyros_dumbbell_z
gyros_forearm_z
gyros_forearm_x
gyros_arm_z
new_window o
main = printing training metrics
Accuracy:
Precision:
Recall:
Confusion Matrix:
[[u48

[

[

[

[)11

main = printing testing metrics
Accuracy: 50 1
Precision:
Recall:
Confusion
L

[

]
o]
o]
1]

]

]
| main = predicting
| main = printing prediction results
; 7 3 2]
'B', 'E', 'D', 'E', 'A'
| main = finished

, IBI' 'A‘, IAI' |(:|, |A|’ |D|’ IBI’ |C|' IEI' |D|' IB']

